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Abstract. In order to inherit numerically the ergodicity of the chemical reaction system with
delays, we propose and study an Euler-type numerical method from the point of view of stochastic
delay differential equations. We not only prove the unique exponential ergodicity of the numerical
solution of the approximation, but also present error estimation on invariant measures, which gives
order 1 under certain hypotheses. Numerical experiments are provided to illustrate the results.
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1. Introduction. Many chemical dynamics (processes such as transcription and
translation in a genetic regulatory network) are not instantaneous and may have
considerable delays associated with them. For example, there is an average delay of
10-20 minutes between the action of a transcription factor on the promoter of a gene
and the appearance of the corresponding mature mRNA in the cytoplasm [19]. Taking
the delays into account is crucial for the description of transient processes. It is well
known that in some delay-sensitive cases, neglecting delays in simulation will lead to
erroneous conclusions, since delays can alter qualitatively the dynamical behavior; for
example, delay can induce oscillations [2, 17]. Increasing delay dramatically prolongs
the mean residence times near stable states for bistable gene networks, which means
that delay stabilizes bistable gene networks [9]. In chemical reactions, noise and
delay may interact in subtle and complex ways. For example, in genetic regulatory
networks, delay can affect the stochastic properties of gene expression and hence the
phenotype of the cell [5]. For bistable gene networks, due to the stability enhanced
by the infusion of delay, it may induce an analogue of stochastic resonance [9]. In
order to take proper account of these aspects, mathematical modeling and analysis
of the delayed chemical reactions is necessary. An effective method is considered via
modeling the phenomena by a stochastic dynamical system whose evolution in time
is governed by random forces as well as the intrinsic dependence on the state over its
history, i.e., stochastic delay differential equations (SDDEs) driven by Poisson random
measure [14, 7]. Though the solution of SDDEs is not a Markov process, the segment
process of the solution is shown to possess the Markov property [18]. Moreover, under
certain conditions, the process is proved to possess the invariant measure [11, 22], and
even exponential ergodicity [1, 10, 12, 21].
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In the numerical aspect, we expect to have the accelerated, approximate algo-
rithms not only to compute the solution efficiently and effectively, but also to inherit
the properties of the original system. An explicit Euler-type numerical method is
considered in this paper, which is called a D-leaping scheme for the approximate sim-
ulation of biochemical systems with delays [3, 7]. It is shown that the segments of
the solution of the continuous time version of this numerical method not only possess
the Markov property, but also exponentially converge to the unique invariant mea-
sure, which means that the approximated process is also ergodic. We refer readers to
[23, 15] and references therein for the construction and analysis of ergodic numerical
methods for ergodic stochastic differential equations without delays.

Since the segment processes of the solutions of SDDEs and approximation possess
the unique invariant measures, our other interest is to investigate the error between
invariant measures induced by the exact and approximated segment processes, which
is obtained via the independence of time for the weak error. In order to estimate the
weak error, we take a similar approach as in [7] to utilize the Markov property of the
segment processes to rewrite the error as the summation of weak local error. The
mathematical analysis of local error term is technical in two ways. First, since delays
break the Markov property of the system, by contrast with the nondelay case stochas-
tic ordinary differential equations (SODEs), SDDEs do not correspond to diffusions
on Euclidean space. Thus techniques from deterministic PDEs do not apply. Sec-
ond, techniques used in [6] to derive the weak convergence order of Euler scheme for
SDDEs driven by Brownian motions utilize the Fréchet differentiability of the Euler
approximation Y (¢,;t;,n) with respect to the initial data 7 and mean value theorem
to show that the local error term is of order O(6t?). However, since the coefficients
in the SDDEs of chemical reactions are not differentiable, the above approach is also
not appliable. In order to derive the time-independent weak convergence order of the
scheme, we first establish the boundedness of the segment processes of the exact and
approximated solutions, and the Malliavin derivatives such that the bounds are inde-
pendent of time. And then by inserting the functional of the previous step into the
weak local error term, we separate the local error term into two parts, and then apply
the tame It6 formula. Moreover, the Malliavin calculus and anticipating stochastic
analysis techniques are employed to show that

[Ed(X (tn)) —Ep(Y (t,))] < Cdt Vn=1,2,...,

where the constant C' is independent of time. Here X (¢) is the exact solution process
of the chemical system and Y (¢) is the approximated solution generated from the
D-leaping scheme, and ¢t is the maximal time stepsize. Based on the result of the
time-independent weak error analysis and ergodicity of the exact and approximated
segment processes, we show that the error between invariant measures is of order 1.
The rest of this paper is organized as follows. In section 2, the main results of
this paper are introduced. In sections 3 and 4, we give the proofs for the main results.
Section 3 is for the proof of existence and uniqueness of invariant measure, and the
exponential ergodicity, while section 4 is for the proof of weak error analysis and
the estimate between invariant measures. Numerical experiments are performed to
support theoretical results in section 5.
Last, we define the following notations in order to describe our set-up.
1. Z¢ = NU{0} denotes the set of nonnegative integers. Mathematically, a well-
stirred chemical reaction system can be accurately described by a discrete
state continuous time jump process on the lattice (Zj)N.
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2. Let R™ be n-dimensional Euclidean space with Euclidean norm |z| for x =
(1,...,2,) € R" so that |x| = /22 + -+ + 22, and the inner product in R™
is denoted by (z,y), where z,y € R", so that (z,y) = >/, %;y;.

3. D := D([-7,0],R™) represents the space of all cadlag paths [—7,0] — R,
given the supremum norm ||9||cc = SUp_,<,<q [7(s)| for all n € D. The space
D is complete but not separable under the metric || - [|o. In order to make
D not only complete but also separable, we introduce the Skorohod metric
(see [4, section 12]): let A denote the class of strictly increasing continuous
mappings, and set

NGRS
A= sup ‘logw‘ VA € A.

—7<s<t<0 t—s
For any z,y € D, the Skorohod metric d°(x,y) on D is defined by

@*(@,y) = fnf NPV lz = yo Mo},

for which we have d°(x,y) < ||z — Y|/, z,y € D.

4. The notation P(D) denotes the collection of all probability measures on
(D, B(D)), By(D) means the set of all bounded measurable function F' :
D — R endowed with the uniform norm [|F|lo := supgep |F(¢)], and Lip(D)
is the family of all Lipschitz continuous R-valued functions defined on D.

5. Let X' (ty) (t; < t3) be the solution process, starting with initial data
n € D at time t = t;. If t; = 0, it is often written as X"(t3). Sometimes the
superscript is omitted, if there’s no confusion.

6. Throughout this paper, the notation C' denotes the time-independent con-
stant, which may be different from line to line.

2. Main results. Let us consider a well-stirred system of N molecular species
{51, 52,...,Sn} interacting through M chemical reaction channels { Ry, Ra, ..., Ry}
The state of the system is described by the vector

X(t) = (Xl(t),XQ(t), N .,XN(t))7

where X7 (t) is the number of S; molecule at time ¢. The dynamics of reaction R; are
defined by a state change vector v; = (V}, 1/12», ey Z/JN ), where V7" gives the changes
in the .S,, molecular population produced by R; reaction, and a propensity function
aj(x) with a;(x) > 0 for physical states, and a;(x)dt is the probability that the
system will experience an R; reaction in the next infinitesimal time interval [¢, ¢+ dt)
given X (t) = «. Counsider the case that delays are involved; we suppose that a
subset of, or all, reaction channels {Ry,..., Ry} incur a delay. If we denote this set
of channels as I4, then a reaction R; € Ig will finish with a delay of 7;, after it is
initiated. The set I,,4 consists of all the channels without delay, i.e., I,4 N Iy = 0 and
{Rl, R, ... 7R]\/[} =I,qUl,.

Since X (¢) denotes the numbers of molecules, it should be nonnegative integers;
we let Qx, be the set of all the possible physical states generated from some initial
state Xo € (Zg)N at time tg = 0,

M
Ox, = {X | X € (Z)N, X =Xo+ > kv, k€ Zg}.

j=1
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Thus the assumption that the propensity function a;(z) > 0 for all x € Qx, is
natural. Moreover, the number of the molecules could not be arbitrary large in realistic
chemical reactions; it is also reasonable to let X (¢) be in a bounded lattice. By
modifying a;(x) to be zero at negative integers, we can see that a; is Lipschitz.
Denote A the upper bound of total propensity: A = max{ao(x), € Qx,}, where
ao(@) = 071, aj ().

From [14], we notice that the state process X (¢) above could be formulated as
the form of stochastic differential equation (SDE) with delay, or SDDE driven by
Poisson random measure. In order to unify the equation, we set the delay 7; =0 to a
nondelayed channel R; € I,,q. Therefore X (t) is the solution of the following SDDE
driven by Poisson random measure with initial data n € D:

M tA
)+ vici(a; X(s— A(ds x da), t>0,
(1) X(t) = ngofof i€ i~ DA( )
n(t), —7<t<0,7=max{r, j€ I},

where the characteristic function ¢;(a; X (s — 7;—)) is defined by

) )= 1 ifae (hj—1(X(s—)), hj(X(s—))],
eila; X i) = {O otherwise

with hg = 0 and h;(X(s—)) = hj—1(X(s—)) + a;(X (s — 7;—)). Thus intervals
(hj—1(X(s—)), hj(X(s—))], j = 1,2,...,M are disjoint and the length of the jth
interval is a;(X (s — 7;,—)). Here A(d¢ x da) is a Poisson random measure associated
with a Poisson point process (p(t), t > 0) taking values in [0, A] with Lebesgue
intensity measure m(dt x da) = dt x da on the probability space (Q,F,P), i.e
A([0, t) x B) = #{0 < s < t;p(s) € B} for each t > 0, Borel set B in [0, A]. Let
{Fi}t>0 be the filtration generated by the values of the compensated Poisson random
measure A(dtx da) := (A—m)(dt x da). The mean and variance of Poisson integration
for a stochastic {F:}+>o-adapted process 0(t,z),t > 0, z € [0, A] are frequently used
in the following analysis:

//osz (ds x dz) //esz (ds x dz),
]E( /0 /0 e(s,z)X(dsxdz)> ) /0 /0 0% (s, z)m(ds x dz).

Note that for a Lévy process X (t), its jump AX(t) = X (¢t) — X (t—) equals to zero
a.s. for fixed t > 0. Moreover, for any continuous function b(z) and two positive reals

d > ¢, it holds that fcd Aa(X(t))dt = 0. We refer to [20, Chapter 9] and [14] for the
proofs and further properties.

We make the following hypothesis to consider the invariant measure and ergodicity
for system (1). Since (1) may be rewritten as

M M ooa B
X(t) = Z’jjaj(x(t —7—))dt + Z/o vjcj(a; X(s—1;—))A(ds x da),
j=1 j=1

the following monotone-type condition is given on the drift and diffusion coefficients.
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ASSUMPTION 1. For any ¢, € D, there exists ay > g > 0, such that
M M
2<¢(0> = 9(0), D _wia;(é(-=77)) - Zvjaj<w<—rj>)>
j=1 j=1

2
da

M

A
<l
o i3

M
> vici(a; ¢(—1)) = > _vici(a; p(—75))
2 P
< ~an[9(0) ~ (O +a> max [o(~75) — v(~7)|*.

For any N-dimensional stochastic process X : [—7,00) x  — RY, define the
segment process { X, : [-7,0] x Q — RN}te[o s0)’ by

(2) Xi(u)=X({t+u) Vuel[-T0],

which is also called a past (or memory) of the process X at the moment ¢.

Due to the existence of delays, the solution process of (1) is not even a Markov
process. However, we know from [1] that the segment process of the solution of (1)
possesses the Markov property, and further under the Assumption 1 it has a unique
invariant measure 7(-) € P(D), which is exponentially ergodic, i.e.,

3) |PF(€) —m(F)| < C()e™™||FllLip, t=T7.6€D,F € Lip(D).

Here 7(F) = [, F(&)r(d¢), and the Markov transition semigroup P for segment
process X; can be given by P,F(£) := EF(X’), where X? is the segment process of
the solution for (1) with initial data £ € D.

For the numerical approximation of system (1), we consider the D-leaping method
which is proposed in [3] and is rewritten as the following continuous time version in

[7]:

M tA
0)+ > vici(a; Y o((s—75))A(ds x da), >0,
4 Y@= j:lofof T ’
n(t), —1<t<0, 7=max{r;,j€ Iy},

where ((t) = t, if t € [tn, tnt1). Define time stepsize 6t,, := tp41 — t, and 0t :=
max,{dt,}. We refer readers to [7] for the strong and weak convergence order of
scheme (4) in a finite time interval [—7,T], i.e

1/2
(BIX ()~ Y(E)1P) " < Cot'2, [Eo(X () — ES(Y (ta)| < Cot.

Note that the above constants C' depend on the final time T'. However, under Assump-
tion 1, we could show that the segment process of scheme (4) has a unique invariant
measure 71V (-) € P(D), which is exponentially ergodic. It could make the constant C
get rid of the final time T

THEOREM 2.1. Under Assumption 1, numerical method (4) has a unique invari-
ant measure w (-) € P(D), which is exponentially ergodic, i.e.,

(5) IPNF(¢) —aN(F)| < Ce ™™ Vit>71,6 €D, F € Lip(D),

where the exponent k > 0, and the constant C := C (£, F).
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The proof of Theorem 2.1 is postponed to section 3.
Moreover, we could show that the error between invariant measure 7 of (1) and
invariant measure 7 of (4) is of order 1.

THEOREM 2.2. There exists constant C independent of time, such that
(6) |7(F) — 7N (F)| < Cét V F € CZ(D).
The proof of Theorem 2.2 is postponed to section 4.

3. Exponential ergodicity of Euler-type scheme. In this part, we will in-
vestigate some properties of the solution of scheme (4), such as the Markov property
of the segment process, the existence and uniqueness of the invariant measure, and
the exponential ergodicity under Assumption 1. We refer to [22] for the Markov and
eventually Feller properties for the solution of delay differential equations driven by
the Lévy process and to [1] for the ergodic properties for segment processes associated
with several classes of retarded SDEs with different types of delays.

The following lemma deals with the Markov property.

LEMMA 3.1. The segment process {Y;(-) : t > 0, € € D} describes a Markov
process on D with transition probabilities p(t1,&;ta, ) given by the following: for any
t1 < 1o,

(7) p(t1,&t2, B) = Pw e Q: Y5 (w) € B).

Proof. 1t is equivalent to prove that the Markov property holds: for all £ €
LQ(Q,D;]:O),
P(Y;; € B|F,,) = P(Y;; € BIYS).

First, we prove
(8) P(Y € B|F,) = (thY (+);ta2, B),
which means for a.a. w’ € Q,

(9) (Pw: Yiw) € BIF,)) (W) = pltr, Y (@)ita, B).

By the definition of conditional probability, we see that (9) is equivalent to

¢ _ 0,Y,S (') /
/D 15(Y5 (w))dP(w) = /D / 15 (v Y0 ()P (W) aP(W)

for all D € F;, and B € B(D), and 1p is the characteristic function of B. Since
we could use a sequence of bounded and continuous functions to converge to the
characteristic function 1 for all open sets B in D, we only show the following case:

(10) / F (VS (@)dP(w / / HY2TE ) )} dPw)dP (),

where D € F;, and f: D — R is bounded and continuous.
Since Y;f € L*(Q,D; F,), there is a sequence {1;}32, of Fy,-simple functions
converging to Y% in L*(Q, D; Fy,), ie.,

j
= Z bjila; ., i€ Fiy, ¢ €D.

i=1
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t1,YS
Therefore by Ytg = Y;; 1 we have for a.a. w € Q,

j*)OO

3 5 1 - t1,¢j,i
Yi(w) = Jim ¥;,"" (w) = lim ZY (w)Lg,, (w).

Each Y;Zl’(b“ € L%(Q,D; F;, N Gh), where Gh is the o-algebra generated by the

compensated Poisson random measure X from the inverse time direction, i.e.,
o {\(B, (t,u]), t <u, Be B((0,A4])}.

. t1,b;. .. . .
So we can write Yt;’d)“ as a limit of G''-simple functions:

mp
t1,95 _ s i 7> t
Y, —,}f;ozekhlﬂw 0% €D, Qp ), € G".
h_

Note that the left-hand side of (10) is equal to

/ lim f(zn?%(w)lgj(w)) dP(w)
DI\ T4
= i [ 30 (¥ ), )P)

o . i X
= jfim lim /D ; ; FOF)10; , (@)1g,, (W)dP(W)
nj mg

The right-hand side of (10) is equal to

/ /Q Tim £ (¥ @))aP@)dP)
= m / / Y0 () ) AP()dP)

—gm [ fKZY;“‘f’“l >><w> AP(w)dP(w)
=g [ [ [ZYJW 0, ()| dP(w)aP()

= lim / / Z £ (¥ @)1, (&) AP(@)AP(W)
j&r&klirgo/jj/i%f(Gi’fh)lQZﬁ(w)lg_jyi(w/)dP(w)dP(w/)

= lim Tim >3 F(815)P(4,) P20 D).
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Now Q;;, D € Fy,, s0 Q;; N D is independent of Qj , € G". Hence
P(Q; ,)P(Q;:N0 D) = P(Q, N2y N D).

Compare (11) and (12), and it follows that (10) must hold.
Second, we prove

(13) p(t1, Y ()ita, B) = P(Y; € BIY}").

Due to the measurability of p(t1, Yf, to, B) with respect to the o-algebra generated
by Yé, we have

p(t1, Yfita, B) = E[P(YS € B|F,)

YS] = P(Y§ e BIY)),

since the o-algebra generated by th C Fyy-
Thus we finish the proof. 0

The following lemma establishes the time-independent boundedness of the seg-
ment process Yz, which gives us the existence of the invariant measure 7 ().

LEMMA 3.2. There exists a constant C independent of time, such that

sup B[ Yi[12, < C.
t>T

Proof. By using It6’s formula to |Y (¢)|2, for any ¢ > 0, we have

E|Y (t)]* — Eln(0)[?
M 2
Y (s—)+ Y _viei(a; Yo((s—5))

-wf [ ey
14) :]E/Ot/OA l2<Y(S_)’ ij:,,jcj(a; YoC(S—Tj))>

M
> vicjila; Y o((s — 7))

Jj=1

- |Y(s)|2] A(ds x da)

+ 1m(ds x da).

Under Assumption 1, (14) can be estimated as
t
E|Y (t)* — E|n(0)|*> < IE/ [— 1Y (s—)|? + apmax |Y o (s — Tj)|2]d8
0 J

t t
Sﬂh/EWWW%&Hw/ sup  E|Y(r)[2ds.
0 0

s—17<r<s

Based on Gronwall’s inequality, we know that there exists a constant C' independent
of time, such that

(15) sup E[Y (t)]* < C.
t>—7
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Since [|Y;]|2, = sup_,<4<o |Y (t 4 0)|?, we apply the It6 formula to Y (¢ + 6)[*:
for any t > 7 and 0 € [—T,0],

Y (t+0) - |Y(t- T)I2

/He/ ZV]C] a; Y o((s—7;)))m(ds x da)

t+6
(16) /t /

t+6 B
+ /FT /0 2(Y (s—), ;I/jcj(a; Y o({(s—7;)))A(ds x da)

A

We apply sup_, <9< and expectation to the first and second terms in the right-hand
side of (16) and then get

t+60 A M
{ 7§2£)<0/t /0 2(Y (s-), jz:;l/jcj(a; Y o((s —7j)))m(ds x da)}
t+6 A
vz _f3£<0[ |
<CE /

t
<C [ (1HEYE)P +maxBIY o (s — ) ds
J

t—T1

2
IJ]CJ a; YOC(S—TJ'))‘ m(ds x da)

ujcj a; Y o((s—1y)) Mds x da).

2
¢i(a; Y o((s—15))

m(ds x da)}

: M
ds—l—E/t Z|Vj|2aj(YoC(3_Tj))d8

-7 =1

: Z'/jaj(Y o((s —5)))

j=1

<G,

where we use the fact that Y € Qx,, which means |Y (¢)| < |Y (¢)|?. Utilizing the
Burkholder-Davis—Gundy inequality to the third and forth terms in the right-hand
side of (16), respectively, we get

t+6 A M _
{ o [ 2<Y<s—>,Zujcj<a;Yo<(s—m>>x<dsxda>}

—7<6<0 =
1
2

t A M
scnz( | |<Y<s—>,Zujcj(a;Yo<<s—rj>>>2m<ds><da>>

2

N

< CmaxE
J

SijaxE(/f_ Y(s)zaj(YoC(s—Tj))ds>
| we

21 +|Y ol(s — Tj)|)d$>
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< CE(/:T \Y(s)|2ds)% + ijaxE(/tiT 1Y (3)]2|Y o ((s — Tj)|d8>

t 1 t
<c +IE/ ¥ (s)Pds + ZENYi |2, + C’maxE/ Y o (s — ) Pds
t—1 J

t—T1

1

2

1
< SEIYiI% +C,

and

{ sup /tt+9/0A‘§V]CJ (a; YOC(ST]))‘Q}\V(dSXda)}

—7<6<0

([ []2

< ijaxE(/t_ a;(Y o((s —Tj))dS)

< ijax]E(/t (1+]Y o((s Tj)DdS)

1
2

4
Zujcj(a; Y o((s— Tj))| m(ds x da))

1
2

2

t
SC—i—CmaXIE/ Y o¢(s —75)?ds < C,
J t—7

where we use the boundedness of Y (t) (see (15)).
Combining these estimates together, we have

1
(17) E|Y:[% <E[Y (- )P + E[VillS + C,

which leads to
supE[ Y[, < C.

t>T
Thus we complete the proof. ]
Remark 1. Under the same procedure, we could prove that the moment of X is

also uniform bounded for all the time, i.e.,

sup B[ X, 12, < C,
t>T1

where the constant C' is independent of time.

For § € [—7,0] and g € [0, 6] with 6 > 0 being an arbitrary constant such that
0+ 6 € [—7,0], by the It6 isometry, for any ¢ > 7, we obtain from (4) that

E*|Y,, 5(6) —Yt(a)]2 =E|Y(t+6+6) - Y(t+06)
2
]Et+9

t+6+6
/ / ch] a; Y o((s—7;))A(ds x da)

t+60+46
S C Et-‘r@
t+0

E VJCLJ (Y o( S—Tj

j=1

/ Z'VJ| aj YOC(S_TJ))}dS
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where E*() := E(:|F;). Under the global Lipschitz property of functions a; and the
boundedness of the segment process, there is a random function (¢, ) satisfying

EY, 5(0) — Yi(0)]* <EO(t,6) vOe(o, 0], 6€l-T, 0],

and

lim lim sup Ev(¢,4) = 0,

0=0 t—oc
It follows from the Kurtz criterion of tightness [13, Theorem 3| that Y; is tight in D
under the Skorohod metric. Combining the tightness and eventually Feller property
(similar to section 3.3 in [22]), we conclude the existence of the invariant measure by
the Krylov—Bogoliubov theorem (see [8, Theorem 3.1.1] or [16]).

The following lemma establishes the difference of the segment processes Yf and

Y,” with different initial data & and 5. The difference could be controlled by an
exponential decay function, which leads to the uniqueness of the invariant measure,
and the exponential ergodicity.

LEMMA 3.3. Let Yt5 and Y,", t > 0, be the segment processes of the solution
of (4) with initial data & and 0, respectively. Then there exist a time-independent
constant C' and a parameter k > 0 such that

sup E[|Y,* — ¥}"[|2, < Ce >
t>T

Proof. By applying It6 formula to |Y'¢(t) — Y (¢)|?, we could obtain, for ¢ > 0,

dE[Y(t) — Y (t)]?

A M
:E/O 2YE(t-) - Y"(t-), ZVJCJ‘(G; Yo ((t—15)) —vici(a; Yo ((t— 1))
M "~ 2
+ Zl/jcj(a; Y o((t—15)) —vici(a; YT o((t— ;)| m(dt x da).

Let p(t) = E|Y'$(t) — Y"()|?, and under Assumption 1,

p'(t) < —aip(t) +az sup  p(s).
t—7<s<t

By Gronwal’s inequality (see Lemma 2.3 in [1]), there exists some x > 0 such that
E|YS(t) - Y(t)]> < CE||¢ — n||2e™ 2" < Ce 2 Vit >0.

Using the Burkholder-Davis—Gundy inequality, we estimate as in Lemma 3.2 to show
that there is a time-independent constant C' such that

E|Y) - Y% < Ce 2, t>r1.

Thus we finish the proof. 0

Remark 2. Under the same procedure, we could prove that the dependence of X,
on initial data, i.e.,

igplElle - X/|13, < CEll¢ = nll3e™".
=T
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The uniqueness of invariant measure follows from this exponential decay property.
In fact, assume that 7V (-) € P(D) is also an invariant measure, and then for all
F € Lip(D),

[ (F) =7 (F)| =

[ e - [ Fowan)

D D

< [ |REE© - PN P[0 )
DxD

— [ [ePer®) - PO RV @R ()
DxD

<C [ E&(YS, Y,")" ()" (dn)

DxD

<C [ BV - Y ar @R ) 0. asto o,
DxD

Last, the exponential ergodicity could be shown similarly. By the invariance of
the measure ¥ € P(D),

|PNF () —n(F)| =

AGEY RAROEACY
< [ IP¥P© - PP ()
- [ IBPE ~EPOY) i ()
< CEA(YY, ") < CE|Y) - Y/l
<c(EvE-vIR)" <cen
4. Error estimate on invariant measures. In this section, we will study the
error between invariant measure 7 of (1) and invariant measure 7 of (4).

In fact, based on the ergodicity of processes X; and Y;, we have the following two
equations: for any deterministic initial data £ € D,

1T ey — _

lim - /O EF(XE)dt = /D F(n)r(dn) = =(F),
lim TEF(Yf)dt: / F(n)xN (dn) = =N (F).
T— 00 0 t D

Supposing we have the time-independent weak convergence order, from

1 T
lim / EF(X!) — EF(Y®)dt

T—o0 0

T

< lim l/ |EF(X}) — EF(Y})|dt,
T—o00 0

the error between invariant measure 7 of (1) and invariant measure 7V of (4) has

obviously the same order as weak convergence order. Therefore, the key point to

prove Theorem 2.2 is to show that the weak error of scheme (4) is independent of

time interval.
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The classical approach to prove the weak convergence order of SDEs is via a Kol-
mogorov PDE. At some point the success of this approach is based on the adaptedness
and Markov property of the underlying stochastic process. However, due to the ex-
istence of time delay, the Markov property is broken, and SDDEs do not correspond
to diffusions on Euclidean space. Thus the PDE technique does not apply. Another
approach to prove the weak convergence order of SDEs (even the anticipating SDEs)
uses the integration by parts of the Malliavin calculus (see [6, 7], for example) instead
of using the Markov property and the solution of the PDE. However, the nondifferen-
tiability of the coefficients of (1) adds complications and difficulties to the analysis of
weak convergence order. To solve this problem, the tame property of numerical ap-
proximation, the It6 formula for tame functionals, and Malliavin calculus are utilized.
See [7, section 3.2] for the weak convergence analysis in finite time interval.

The brief outline of the proof of the result of weak convergence order is as follows;
see section 4.3.

Step 1. For any test function ¢ : RY — R, we utilize the Markov property for
the segment processes X;, Y; (see Lemma 3.1), and the tame character of Y*"(¢)
(see Lemma 4.4 or Proposition 4.5) to rewrite the weak error as

n

E¢(X,) — E¢(Y:,) = > {Eu((X; ") ~ Bu(ll(X,,_,)) |

i=1

Step 2. In this step, we make use of the tame It6 formula to expand each term in
the right-hand side of the equation in Step 1. Hence,

t; ti )
E¢(X:,) —E¢(Yi,) =) > > ( / Dy, (s)ds + / Di;%(s)ds),
i=1 m=1j=1 - ti—1

where

D} = B{ 0, (X (s + i — 7,7)) = a;(X (tit + pom — )} (LX)},
D7 = B{ (X (tio + o — 7)) (X)) = £ (U(Y2))] .
Step 3. To estimate the term D j in Step 2, we need the establishment of It

formula for tame functionals (see Prop051t10n 4.6) and the Malliavin differentiable of
SDDE (1) (see Proposition 4.7). It yields

DL | = 0(st).

Step 4. The estimate of the term D" 2] in Step 2 is similar as in Step 3, we make
use of It6 formula for tame functionals and Malliavin differentiable of SDDE (1) to
obtain

2 2Jy = O(dt).

4.1. Preliminaries. In this part, we will introduce some notation and proposi-
tions about Malliavin calculus and the tame Ito formula.
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First, let us start with a brief introduction of Malliavin calculus for Poisson ran-
dom measure, and note that all the definitions and properties are from [20, Chap-
ter 12], which is by means of the chaos expansion in terms of iterated integrals
with respect to compensated Poisson random measure. Denote D the Malliavin
differentiation operator associated with Poisson random measure. For F € D2,
we call D;,F the Malliavin derivative of F at (¢,z). Here D"? is a stochastic
Sobolev space consisting of all Fr-measurable random variables F' € L%(P) with
chaos expansion F = > 'I,(f,) satisfying the convergence criterion ||F|3,, =
22:1 nnl||fall2. < oo (see [20, Definition 12.1]). The operator D is defined by
Dy .F = Y > nly_1(fn(-,t,2)) for all F € D"? (see [20, Definition 12.2]). To
perform the weak convergence analysis, we also need some properties of Malliavin
derivatives. First, we present the chain rule for Malliavin derivative; for the proof we
refer to [20, Theorem 12.8].

PROPOSITION 4.1 (chain rule). Let F € D2 and let ¢ be a real continuous
function on R. Suppose ¢(F) € L*(P) and ¥(F + D; . F) € L*(P x A x v). Then
»(F) € DY? and

(19) Dy p(F) = W(F + Dy . F) — §(F).

The Skorohod integral can be considered as an adjoint operator to the Malliavin
derivative, and it is an extension of the It6 integral. See [20, Definition 11.1] for the
definition of the Skorohod integral. Below is the relationship between the Malliavin
derivative and the Skorohod integral; for the proof we refer to [20, Theorem 12.10].

PROPOSITION 4.2 (duality formula). Let X(¢,2), t € [0,T], z € [0, 4], be the
Skorohod integrable and F € DY2. Then

F/OT /OAX(t,z)X(dt x dz)] =E

The following result is the fundamental theorem of calculus for Poisson random
measure; for the proof we refer to [20, Theorem 12.15].

(200 E /0 ! /0 X (6 2Dy Pt x o).

PROPOSITION 4.3 (fundamental theorem of calculus). Let X (s,y), (s,y) € [0,T]%
[0, A], be a stochastic process such that

/ ' / X (5.3 (s x dy>] < oo,

Assume that X(s,y) € DY2 for all (s,y) € [0,T] x [0, A] and that D;.X(-,-) is
Skorohod integrable with

El/: /OA ‘ /OT /OA Dy X (s,y)A(ds x dy)rm(dt x dz)] < .

T pA .
/ / X (s,y)\(ds x dy) € D'2
0 0

E

Then

and

T (A _ T rA ~
-Dt,z\/0 /0 X(S,y)A(dS X dy) - X(t? Z) +A /0 Dt,zX(Sa y)A(dS X dy)
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Next, let us introduce some notation about the tame functional and the Ito
formula for tame functionals; see [6, 7], for instance. Define the tame projection
II: D — RVF associated with p1, ..., ur € [~7,0] by

(21) I(n) := ((p1), - - - n(ux)) € RVF

for all n € D.
A functional ¥ : [0,7] x D — R is called tame if there exits a functional f :
[0,T] x D — R and a tame projection IT: D — RN* such that

(22) (t,n) = f(t,10(n))

for all t € [0,T] and n € D.
The following lemma gives the tame character of the solution Y*"(t) of the nu-
merical approximation (4).

LEMMA 4.4 (see [7, Lemma 3.8]). Let t; be a fized partition point for some
1€{0,1,..., Ny} Then for a.a. w € Q, the function

[ti, T] x D — RY
(t, ) = Y'""(t,w)

is a tame functional, i.e., there exists a random function F such that
Y (t,w) = F(t,w,11(n)).

Considering the segment process Yf“", from the above result in Lemma 4.4, there
exists a random function F such that, for any 6 € [—,0],

thti,n(e) _ Ytim(t + 9) = F(t + 0, H(n)) = Ft(ea H(n))'

Therefore, we have the following result.

PROPOSITION 4.5. Given any fized t and a function ¢ : D — R, IE(;S(Ytt'“”) is a
tame functional, which means there exists a deterministic function u such that

E¢(Y; ") = Eo(Fy(IL(n))) =: u(I1(n)).

The following proposition presents the Itd6 formula for tame functionals, which
describes how the segment process X; transforms under tame functionals.

PROPOSITION 4.6 (see [7, Proposition 3.10]). Assume that
n(0) + fi [ K(s,a)A(ds x da), >0,
X(t) =
n(t), —7<t<0.

Suppose ¢ € C(R*:R) and let TI be the tame projection. Then for all t € [0,T], we
have a.s.

k t pA
oI 610 = 3 / /

6K () Koo (pim)s X (us) + K (5 + 1, 0), X (i), - Xolpar)

= O(Xem (1), s X (1), Ko (1), X (i), - X ()| A(ds x da).
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4.2. Properties. Now we are in the position to show that the solution X (t) of
(23) is Malliavin differentiable, and the bound is independent of time interval.

Let X (t) := X" (t), ¢t € [c — T,00) be the solution with initial process n at time
o, i.e.,

(23)
X n(0) + Z]M:1 f; fOA vici(a; X(s—1j—))A\(ds x da), t> o,
n(t—o), c—1<t<o.
The Malliavin differentiability of the solution X (t) of (23) is stated below.

PROPOSITION 4.7. For any n € L%(Q, D; F,) with supa_TgsggEfoA | Ds.2nll% <
00, the solution X (t) of (23) belongs to DY2 for all t € [0 — 7,00). Moreover, there
exists a positive constant C' independent of time such that

A A
(24) sup sup ]E/ |D,. . X (t; 0, 77)|2dz < (1 + sup ]E/ |DS’Z7720>.
0 0

o>0rt>o—T1 oc—7<s<o

Proof. We assume 7; = 7 in order to simplify notation. If t € [c — 7, 0], then
X (t) = n(t — o), so it is obvious that (24) holds. We consider the case of ¢ > o: for
given r < t, we have

M t A

D, . X(t) =D, .n0)+ Z Dm/ / vicj(a; X(s—71—))A(ds x da)
j=1 o JO
M t

(25) = D,.n(0) + Y Dy / vja;(X(s—7—))ds

j=1 ’

M t pA _
+ ZDr,z/ / vjcj(a; X(s—71—))A(ds x da).
j=1 o 0

Propositions 4.3 and 4.1 give us
M

Dy X(t) = Dy.n(0) + Y _vjci(z; X(r—7—))

Jj=1

M t
+ Z;/J vj [aj(X(s —7=)+ D, X(s—7—)) —a;(X(s— T—))]ds

Mt A ~
+ Z/ /o vilcj(a; X(s—7=)+ Dy.X(s —7-)) — ¢j(a; X(s—7—))]A(ds x da)
’ M
= Dran(0) + Y _wje;(z X(r— 7))

Jj=1

M .t oA
+j§/0/0 vi[ejla; X(s—7=)+ D, .X(s —7—)) — ¢j(a; X(s —7—))]A(ds x da).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/30/19 to 124.16.148.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

86 CHUCHU CHEN AND DI LIU
Since D, . X (t) = 0 for r > t, we get
M M A
D, .X(t) = D, .n(0) + ZV]'C]'(Z; X(r—7-))+ Z/ /
=1 j=1 r+7 J0
vilcj(a; X(s—7=) 4+ Dy.X(s —7=)) — ¢j(a; X(s—7—))]A(ds x da).

Letting H(t,z) := D, . X (t), the above equation is

H(t7z)—H(r+T,z)+§:1/riT/oA

vi[cjla; X(s—7=)+ H(s —7—,2)) — ¢j(a; X(s—7—))]A\(ds x da),

where H(r + 7,2) = D, ,n(0) + Z]M:1 vjcj(z; X(r —7—)). Applying the Ité formula
to |H(t,z)|?, we have

|H(t,2)|* = |H(r +7,2)|?

/+ / [[H(s—,2) + K(s,a)|* — [H(s—, 2)[*] A(ds x da)
=|H(r+1,2)

/+ / (s—,2), K(s,a)) + |K(s,a)[*]A(ds x da),

where
= Zuj [cj(a; X(s—1=)+H(s—7—,2)) —cjla; X(s— T—))].

Under Assumption 1,

t
E|H(t,2)|* <E|H(r +1,2)|* + / [ — oqE|H(s,2)|* + awE|H (s — T, z)|2]ds,
r+1

and then integrate with respect to z,

A A t A
E/ |H(t,2)|*dz SE/ |H(r—|—T,z)\2dz—a1/ / E|H (s, z)|*dzds
0 0 r+7 J0

t A
+a2/ / E|H (s — 7, 2)*dzds.
r+7 J0

Hence, by Gronwall’s inequality, there exists a constant C' independent of time, such

that
A A
]E/ |H(t,2)|?dz < C[1+ sup / E| D, .n|%dz |.
0 o—7<r<oJ0

Thus we finish the proof. 0
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4.3. Time-independent weak convergence order. Recalling the result in
(18),

T
W(F)—WN(F)‘ < lim %/O |EF(X}) —~EF(YS)|dt V¢eD,

all we need is to prove the following weak convergence theorem, which means that the
time-independent weak convergence order of the D-leaping scheme (4) is 1. Hence,
from (18), the convergence order of invariant measures is also 1, which completes the
proof of Theorem 2.2.

THEOREM 4.8 (weak convergence). There exists a positive constant C' indepen-
dent of time such that

(26) [Ep(Xy,) —Eo(Yy,)| < Cot

for alln € {1,2,...} and ¢ : D — R of class C7.

Proof. Step 1. Using the Markov property for the segments X, (see [18]) and Y;
(see Proposition 3.1), we may rewrite

Eo(Xy,) —Eo(Yr,)

— ]EQb(Y;:l’th _ EQ/)(},;?],XQ)

(27)

I
NIE

{Bo(v ) — oy, )}

n

i=1

tuX:.iil’Xti_l ti,Yttviil'Xti_l
{Eqs(Ytn C) —Ee ™ >}.
1

From Proposition 4.5, we know that there exists a function u such that

I

?

u(Tl(n)) = E¢(Y;"*").

Thus we rewrite (27) into

(28) .
=3 {Euan ) - Euin(x,, )}
{Ea(y ) - Bu(n(X,, )
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Step 2. By the tame Itd formula (Proposition 4.6), we obtain

Eu(II(X, 7)) - Bu(II(Xs,_,))
k ti A M
= ZE/t /0 lu(...,Xs_(um)JrZVjcj(a; Xo—(tm —75))s )

—u(e. o, Xoo (fm), - - )] A(ds x da)

B M
{ Zaj(XS*(:“m - Tj)) [u( vy X (pm) + Vi, .. )
m=1 ti—1 j=1
—u(...,XS,(um)7...)} ds
and
Eu(I(Y, ) ~ Eu(TI(X,, )
k t; A M
-ye[ |/ [uc Yo (i) + 3 w6505 Yoo (i = 7))
—u(.. ., Yo (tm), - )] A(ds x da)
k t; M
= ZE/t {Zaj(y(ti—l + Hm TJ))[U( o Yo (ptm) + V5, )
— .,Y;_(um),...)}}ds
We define

Thus (27) is

ti—1

BO(X,,) ~Eo(Y:,)= Y- 3" DB [ [a(X(s + om — o) (X))

(29) —a

In the following part, we need to show that there exists a time-independent constant
C > 0 such that D;, ; < Cst2.
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We note that

D= [ B{as(XCs o = 5-0) = (X (tir +pim — ) (X Js

ti—1

60+ [ {0 (Xt o - ) O) — £ YD) s

ti—1
ti q ti 9
::/ D, ;(s)ds + / D, i(s)ds.
ti—1 ti1

We claim that for all s € [t;_1,;], D2' (s), Dﬁj(s) < 6t with C' > 0 being indepen-

m,j

dent of time, which means that Dfmj < Cot2.
Step 3. Estimate of the term D:nlj (s). In fact, by the It6 formula

S+ fhm —Tj A B
E{me(H(XS))/t L /0 [aj(X(u))aj(X(u))]A(duxda)}
St pm —Tj

— B4 i) [

ti—1+pm —T;

A ~
/0 [aj(X(u—)) - aj(X(u—))])\(du X da)}

S+ fim —T; A 5
(31) + E{ ) | o | o () (X (=)t da>}
S+ fhm —Tj A 5
=E / Dy f"(I(X5)) [a; (X (u—)) — a;(X (u—))]m(du x da)
ti—1+pm—7; JO

+
B

ag( X (u—14—))

St pm —T;
E{f}”(H(Xs)) /

ti—1+pm—Tj

{=1
(o (X (=) + ) - %-(X(u—)))] du}7

where
M

X(u—) = X(u-)+> vice(a; X(u—7-)).
=1

Noting that
[ I(Xs) = ul o, X (pm) +v5, -0 ) — (e, X (ptm), - - ),
we make the following estimates for functions of f":
m 2 2
B (X)) < Blul. . Xo (tm) + 5 )|+ Eluc ., X (i), )|
e = 2 i 2
— BJE( ) = Ko ) + BBV = X, )|
(X ~sf 2 X s— 2

< E|o(¥,, )" + Elo(¥,, ),

where X,_ € L([—7,0],RY) is defined by

(X)) = big(Xo— (1) -, Xoo (m) + V5, ., Xo (1)),
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and thus
E|fi* (X)) < CllolIg, (1 +E[X[3%,) < C

And the estimates for D,, . f}” follow: Since

A
E / 1D, f7 (X)) Pz
0

e[

gCE/ Z|f’” Xo(p0) + Dz Xolpae)s ) = £ Xope), )Pz,

k
Z( X, (te) + Dup X (o), ) = f( o Xolae)s )

we have

E[f7 (oo, X (1) + Do Xope), ) = £y Xolpae), )|
< 2E[ul. .., Xom () + Du e X (pm) + ) = (..., X (i) + )]
+ 2B [ul. ., Xo (ftm) + Due X (ttm)) — - Xoo (ptm)[”
< CYlIZ 11D X o ()32 r.p

where in the last step we use the result in Lemma 3.3. Further via Proposition 4.7,
A A
E /0 |Du= 71 (I(X)) Pz < CllglIE, /0 E||Dy2 X (5 + )72 (-0 dz < C

Thus we can get that D' ]( s) < Cot, where C' does not depend on time. In fact, the
first term on the right- hand side of (31) can be estimated by the Holder inequality:

S+ fhan —Tj
/ / Dao £ (X)) [0 (X (u=)) — a3 (X (u=))|m(cdu x da)

ti—1tlm—T;
S+ pm —Tj )
</ [ By mx)
ti—1t+pm—7; JO
5 2
+ E|a; (X (u—)) — a;j(X (u—))|" }m(du x da)
S+ pm —T; A
< Cot + L2E/ / | X (1) — X (u)]*m(du x da)
ti—1t+Hm =T
St fm —Tj
< Cot + LQKZE/ / Z lce(a; X (u —70—))*m(du x da)
ti—1+pm—Tj —1
S+ pm —Tj
- 05t+L2K2E/ Zag(X(ungf))du
ti—1tpm—Tj p—1

S+ pm —Tj M
< C(St+C’L3K2E/ (1+Z|X(u—n—)|2>du

ti— 1t pm —T; (=1

< Cét.
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Note that the constants C' in the above estimate are independent of time. The second
term on the right-hand side of (31) can be estimated similarly,

S+ im—Tj
E{f}”(H(Xs)) / o ‘g<u>du}

ti—

< (o) (o [ af)’

1+pm f‘r]
) S+l —Tj 2
< Cot2 IE/ lg(u)|*du | < Cét,
ti—1t+pm—Tj
where
M
W) = 3 ae(X (= 7)) (o (X (u=) + 1) = 5 (X (u=))
=1
and
M
E|g(u)|? < LQKQE(l +3 X (u - n—)|2) <C.
=1

Step 4. Estimate of the term fo](s) The estimate of term Dfnzj(s) is similar,
but by using the tame It6 formula,

D:;f,j(s)
= E{a(X(tis + o — )| (47 (01(X0)) = £ (0(X2,)))
- (@) - e, ) |

‘ )
k
/1 1/ D, faj 1+,Um_7—j))£z:;

(32) U K ) — S X (o). ]
- [fj (o Ve (ue).o ) = £ Y (), )] bm(du x da)

s k M
FEG Xt 4 =) [ 30D [ (Xt = 7,2 FL (1K)
tic1 =1 j,=1
— a;, (X (tio1 + e — 75, ) Fy (H(Yu))]du’
where

FLI(X)) = 7o Ko (1) ) = 7 Ko ), ).

By Proposition 4.7, we may show that D;fj(s) < Cdt with C being independent of
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time. In fact, the first term on the right-hand side of (32) can be estimated by the
Hoélder inequality,

s A
IE/ / Dy qa;(X(tic1 + i — 7)) 91 (u, a)m(du x da)
i—1 70
s A
<[ [ [EIDuas (X s+ = ) + Bl )2l x do
t;i—1 JO

s A

< Cot+ / / E|Dua X (i1 + 1tme — 75)2m(du x da)
i—1J0

< oo,

where

k
(u, a) :me fie)s ) = f (s X (pe), )]

=1

=[G Y (), ) = S Y (), -]

and

A
/ Elg: (u, a)Pda
0

< C/ || X (u+ ) — X(U‘*")Hi%[q,o]) +E|Y (u+) —Y(U+‘)||2L2([fr,o])da

A M

M
< C/ ZEHC]'(G; Xuery Nz -ron + D Ellej (a5 Yarr, ()l 227,01 da

j=1

- OE(Z llaj (Xu—r; (DL (=700 + Z lla;(Yu-r, ))||L1([—T,o])>
< CE(L + [ Xu—ry 72 (—rop + ||YU«—7'j<.)||L2([7T,O])) <C.

The second term on the right-hand side of (32) can be estimated similarly,

Ea;(X (ti—1 + ttm — 75)) /8 g2(u)du

ti—1

< (Blay(X (tios + = )E) (E| / s gz(u)du|2>

Nl=

[N

< Lot (1 FE|X (fio1 + fim — Tj)F)E (IE/ |gg(u)|2du>
ti—1

< Cét,

where
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— — — Reference line order 1 - — — — Reference line order 1
— — — Reference line order 2 — — — Reference line order 2
10"L | —e— weak convergence order] 107} | —&— weak convergence order
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Weak Error: f(x)
Weak Error: f(x):

at At

2

F1G. 1. Log-log plot of the absolute error with functions f(x) = z and f(z) = x*, respectively.
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F1G. 2. Long time behaviors of the solutions with different initial data for functions f(x) = x
and f(x) = \/z, respectively.

and

2 o ) ee
Floatull = € 1+ue[st?g,5]1%?2{1«12}?5\4@)((“4'#@ HIF)<C

Therefore ’Dfm ;i < C6t? with C being independent of time. Replacing it into (29),
we finish the proof. ]

5. Examples. In this section, two examples are presented to support our theo-
retical analysis.

5.1. Example 1: Linear case. For this system, we consider (} — S with the
propensity function being a;(z) = ax, where the rate constant o = 0.1, the state-
change vector is v; = 1, and the time delay is 7 = 0.4. And S — () with the propensity
function being as(x) = Bz, where the rate constant 5 = 0.5.

We plot the absolute errors of mean and variance in Figure 1. We simulate the
reaction from time 0 to T' = 8 using different stepsizes. The sample size is as large
as 105 so that the magnitude of statistical fluctuation is small. It shows that, for the
system, the scheme has first order accuracy for the weak convergence.

We plot the behaviors of the solution in Figure 2 using different initial data, and
observe that though the solution starts at different value, the averages go to the same
state. It shows that the approximation possesses a unique invariant measure.
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=2

Weak Error: f(x)

P — — — Reference line order 1
P — — — Reference line order 2
P —6— weak convergence order]
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Weak Error: f(x):

— — — Reference line order 1
— — — Reference line order 2
—6— weak convergence order
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F1G. 4. Long time behaviors of the solutions with different initial data for functions f(x) = x
and f(x) = \/z, respectively.

5.2. Example 2: Nonlinear case. For this system, we consider ) — S with
the propensity function being a;(z) = a+f %, where the constants are o = 5,
B =20, b =10, and ¢ = 19, the state-change vector is v; = 1, and the time delay is
7 =1. And S — 0 with the propensity function being as(z) = vz, where the rate
constant v = 1.

We plot the absolute errors of mean and variance in Figure 3. We simulate the
reaction from time 0 to 1" = 10 using different stepsizes. The sample size is as large
as 10% so that the magnitude of statistical fluctuation is small. It shows that, for the
system, the scheme has first order accuracy for the weak convergence.

We plot the behaviors of the solution in Figure 4 using different initial data, and
observe that though the solution starts at a different value, the averages go to the
same state. It shows that the approximation possesses a unique invariant measure.
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